p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.38D4, (C2×Q8)⋊6C4, C4.52(C2×D4), Q8.6(C2×C4), (C2×C4).125D4, C4.6(C22×C4), Q8⋊C4⋊15C2, C4⋊C4.45C22, (C2×C4).64C23, (C2×C8).44C22, C22.46(C2×D4), (C22×Q8).5C2, C4.15(C22⋊C4), C42⋊C2.4C2, C2.2(C8.C22), (C2×Q8).43C22, (C2×M4(2)).12C2, (C22×C4).36C22, C22.18(C22⋊C4), (C2×C4).23(C2×C4), C2.22(C2×C22⋊C4), SmallGroup(64,100)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.38D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=c, e2=b, ab=ba, dad-1=eae-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd3 >
Subgroups: 113 in 75 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C23.38D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C8.C22, C23.38D4
Character table of C23.38D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | 1 | 1 | -i | -i | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | 1 | -1 | i | -i | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | -1 | -1 | i | i | 1 | 1 | i | i | -i | -i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | -1 | 1 | -i | i | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | -1 | -1 | -i | -i | 1 | 1 | -i | -i | i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -1 | 1 | i | -i | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | 1 | 1 | i | i | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | 1 | -1 | -i | i | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 25 18)(2 21 26 13)(3 16 27 24)(4 19 28 11)(5 14 29 22)(6 17 30 9)(7 12 31 20)(8 23 32 15)
G:=sub<Sym(32)| (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,25,18)(2,21,26,13)(3,16,27,24)(4,19,28,11)(5,14,29,22)(6,17,30,9)(7,12,31,20)(8,23,32,15)>;
G:=Group( (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,25,18)(2,21,26,13)(3,16,27,24)(4,19,28,11)(5,14,29,22)(6,17,30,9)(7,12,31,20)(8,23,32,15) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,25,18),(2,21,26,13),(3,16,27,24),(4,19,28,11),(5,14,29,22),(6,17,30,9),(7,12,31,20),(8,23,32,15)]])
C23.38D4 is a maximal subgroup of
(C22×Q8)⋊C4 C42.6D4 M4(2).9D4 C24.98D4 2- 1+4⋊4C4 C4×C8.C22 C24.178D4 C24.104D4 (C2×Q8)⋊16D4 Q8.(C2×D4) C42.445D4 C42.446D4 C42.220D4 C24.118D4 (C2×D4).302D4 C42.241D4 C42.242D4 C23.15S4 (C2×Q8)⋊4F5
C4⋊C4.D2p: C8.C22⋊C4 C24.23D4 C4⋊Q8⋊15C4 C4.10D4⋊3C4 M4(2).31D4 M4(2).33D4 C42⋊10D4 C42.130D4 ...
(C2×C8).D2p: M4(2).46D4 C4.(C4×D4) M4(2).D4 (C2×C8).6D4 C8.D4⋊C2 C23.51D12 C23.46D20 C23.46D28 ...
C4p.(C2×D4): M4(2)⋊15D4 (C2×C8)⋊11D4 (C6×Q8)⋊6C4 (Q8×C10)⋊16C4 (Q8×C14)⋊6C4 ...
C23.38D4 is a maximal quotient of
C42.399D4 C42.401D4 Q8⋊5M4(2) C42.54D4 C42.56D4 C24.55D4 C24.57D4 C42.60D4 C42.415D4 C42.418D4 C42.83D4 C42.85D4 C42.86D4 C24.152D4 Q8⋊C42 C24.155D4 C42.101D4 C42.122D4 C42.125D4 (C2×Q8)⋊4F5
C23.D4p: C23.36D8 C23.51D12 C23.46D20 C23.46D28 ...
C4.(C2×D4p): C42.414D4 C4⋊C4.237D6 C4.(C2×D20) (C2×C4).47D28 ...
(C2×C4p).D4: C24.75D4 C42.111D4 (C6×Q8)⋊6C4 (Q8×C10)⋊16C4 (Q8×C14)⋊6C4 ...
C4⋊C4.D2p: C24.73D4 C42.117D4 (S3×Q8)⋊C4 (Q8×D5)⋊C4 (Q8×D7)⋊C4 ...
Matrix representation of C23.38D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,4,0,0,0,0,4,0,0,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23.38D4 in GAP, Magma, Sage, TeX
C_2^3._{38}D_4
% in TeX
G:=Group("C2^3.38D4");
// GroupNames label
G:=SmallGroup(64,100);
// by ID
G=gap.SmallGroup(64,100);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,199,332,158,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=c,e^2=b,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^3>;
// generators/relations
Export